A “lean design” SSB-Transceiver for 14 MHz

Preface

Currently I am revising older projects that are in my radio shelf, some of them not finished yet, postponed to a later date, some without a cabinet, some with severe problems with performance and so on. All the stuff that needs a “second chance” ;-). This project is one of this collection. The transmitter did not work correctly (severe parasetic oscillations occurred when the section was driven to power levels >1 watt).

By careful testing and examining  I found the reason: The grounding of the rf power amplifier stage was defective due to a connection that had not been soldered properly. After having cured that I found the output was 5 to 6 watts PEP output (very clean). Then, having the project on “GO!”,  I finished the design. Thus I got a nice little “vintage style” SSB QRP trsanceiver as a travel or hiking companion:

DK7IH - Simple SSB Transceiver for 14MHz (VFO controlled, 5W PEP)
DK7IH – Simple SSB Transceiver for 14MHz (VFO controlled, 5W PEP)

Basic concept

Frequent readers on my blog know that one thing I really enjoy is building radios based on a minimalist concept. The fewer components you need for a working transceiver, the better it is. At least in my point of view. Here is another one of these “very lean design” transceivers.

The radio originally was designed as a study for my “Old School Transceiver“. After having not built a “real” analog VFO for a number of years I wanted to find out if I still can set up a construction that is really stable concerning frequency. And because it is not very challenging to just watch the result on a frequency counter, a full transceiver had to be built along with the VFO. The VFO was OK, (see later text!) the power transmitter, as mentioned before, was not. Until I had revised it.

The design is another remake of the „Kajman Transceiver“ by  SQ7JHM. A design I absolutely love because of its simplicity. The radio basically has been designed for 80 meters (even when lot of websites quote it as a 20m rig) so it shows some weaknesses when adapted to 14MHz without any changes. Thus some improvements had to be made.

Improving performance of the SQ7JHM basic design

Some changes that were top of the agenda to meet my requirements:

  1. The receiver needed a preamplifier for bands where atmospheric noise is not that strong. A dual-gate MOSFET equipped radio frequency preamplifier improves noise figure significantly and can be put into the AGC chain to give more dynamic range and a more pleasant listening experience.
  2. An AGC (automatic gain control) is a good idea if you want to use the receiver in a more comfortable way without the need to lower the volume when strong stations appear. In addition the S-meter reading can be derived from the output of the AGC DC amplifier stage.
  3. A little bit more rf output power can be achieved by using a push-pull amplifier. Linearity also improves to a certain degree when using this design because AB mode combined with separated amplification of the half waves plus suppression of even-order harmonics.
  4. To enhance receiver gain a single stage interfrequency amplifier has been added that is only in use when on receive. It is also connected to the AGC chain.
  5. And, last, a microphone amplifier allows you to talk in a moderate way into the microphone which is good for me because I often have my QSOs when the rest of the family is asleep and not keen on listening to my strange “This is DK7IH/QRP, do you copy?” messages.

The schematic of my enhanced design:

DK7IH - Simple SSB Transceiver for 14MHz (VFO controlled, 5W PEP)
DK7IH – Simple SSB Transceiver for 14MHz (VFO controlled, 5W PEP) – Full resolution picture

Fascination originates from the fact that you only need a handful of components (OK your hand should not have the size of that of a new born baby!) to set up a working short wave SSB transceiver.

The VFO

Some thoughts on frequency stability

Careful design is the key for stable operation. This means component selection as well as setting it up on the veroboard.

The basic problem for every conventional free running VFO is temperature and its influence on the size of components. Due to the theory of thermodynamics all materials change their mechanical dimensions with temperature. This is caused by the kinetic energy of the molecules forming the crystals of a solid body. Thermal energy leads to enhanced oscillation of the molecules and therefore the need of larger spaces of each in individual molecule in a crystal. Because we have capacitors in a tuned circuit this will affect the values of all caps (wanted and unwanted ones) to a certain degree.

Something that helps the builder is called “temperature coefficient”. This means that electronic components increase OR decrease their respective value when they get warmer. The first is called “positive temperature coefficient”, the opposite is called “negative temperature coefficient”. So, you might guess, the fine art of radio building involves the knowledge of the characteristic behavior of components when heated.

I quote my findings about temperature behavior listed in the article referred to on the beginning of this text:

Capacitors:

  • Ceramic capacitors: —
  • Polystyrene capacitor: –
  • NP0 (C0G) capacitor: no measurable effect

Inductors:

  • Air coil on polystyrene coil former: +++
  • Coil wound on T50-6 yellow toroid: +

The more “+” or “-” signs, the more steep the function of T->dC or T->dL is. So you can see: The best choice are polystyrene capacitors combined with coil on a yellow toroid. This combination is likely to outbalance temperature effects. If extra capacity is needed, NP0 caps are recommended.

The circuit

From the existing principles of building a free running radio frequency oscillator I prefer the Hartley circuit. It uses a tapped coil (tap about 1/5 from the “lower” end) and saves capacitors compared to the Colpitts design. The tap achieves in-phase feedback. The lower you put the tap to the end the lower the amount of fed back energy will be. This leads to more frequency stability because the circuit does not heat up by excessive internal radio frequency. But be sure that oscillation is always strong enough and does not stop. The Hartley circuit is more simple and caps always inherit the risk of thermal problems when poorly selected.

The tuning is done with a Vernier drive and a homemade variable capacitor. For this a foil variable cap of an old AM radio has been dismantled an reassembled with air as dielectric. Lots of experiments were necessary to get the “frequency swing” correct and the basic capacitance to the right area.

Other measures that support frequency stability are :

  • Low DC power into the oscillator stage (avoids heating the device up by DC current),
  • Stabilizing voltage for the VFO stage by 2 consecutive steps,
  • Using a FET instead of bipolar transistor (no PN boundary layers in a FET),
  • Very loose coupling between oscillator and buffer stage reduce fed back of impedance changes by the output,
  • Low impedance output with emitter follower,
  • Avoid metal sheets (spec. Aluminum) close to the tuning elements! Aluminum sheet metal changes its size largely with even low temperature differences.

Practical results

This oscillator is stable. It needs 5 to 10 minutes to settle which is in the normal range of what can be expected. I then can have it tuned to one frequency and there is a maximum change in frequency < 50Hz for hours. And, to compare with synthesizer  technology: NO birdies at all. Really not. I love it! 😉

The mixers and filter section

NE602 and its derivatives have been used in legions of amateur transceivers. Basically designed for cell phones and small cordless phones radio amateurs quickly have found out that this mixer IC can be the universal mixer in lots of possible amateur radio designs. The main weakness is its low IMD3. But for a 14MHz rig the risk of appearance of strong out-of-band signals is not that likely. Besides, the selectivity of the receiver’s input section supports this. Strong in-band signals did not appear so far due to low band conditions. We’ll have to see how the receiver performs here.

On the other hand NE602 gives a good sensitivity which makes it ideal for radios on the higher bands where signal levels are not so high.

The NE602 has a balanced input AND a balanced output. This allows the designer to get two different signal sources to the input then subsequently mixed with the oscillator signal. As well the two outputs can be used to send the mixed signal to different paths.

This is what is the basic idea behind the design described here.

The mixer that is used together with the microphone to produce the DSB signal by mixing the audio signal with the local oscillator (LO) also serves as the product detector on receive by mixing the interfrequency with the LO. Correct signal path is set with the two relays depending on the fact you are either on transmit or receive mode.

The same principle is for the other mixer. It is transmit mixer or receive mixer, depending on the position of the relays.

The relays connect the SSB filter either to the input or the output of a distinct mixer. A graphical presentation should make it clear:

DK7IH - Simple SSB Transceiver for 14MHz (VFO controlled, 5W PEP) - Signal path display
DK7IH – Simple SSB Transceiver for 14MHz (VFO controlled, 5W PEP) – Signal path display

RX amp and interfrequency amplifier

These 2 stages are more or less the same. They provide 2 to 12 dB of gain depending on the AGC voltage applied to gate 2 of the dual gate MOSFET. In this version of the radio a potentiometer of 20kΩ is used to have the possibility to lower the DC voltage manually, by doing this an MGC (manual gain control) is achieved in a simple way.

Audio amplifier

A bipolar transistor and the inevitable LM386 amplify the filtered audio signal from the product detector to a volume that can be discerned even in a louder environment. The audio low pass filter prior to the AF preamp should be selected due to the users individual preferences concerning tone pitch of the audio signal.

RF power amplifier

This is more or less my standard power amplifier for small QRP rigs. I put stress on linear amplification, so I use emitter degeneration and negative feedback in collector circuit to get best IMD3 results. Even if the circuit could deliver one or two more watts I let the output power level at about 5 watts pep.

Here ist the result of a dual tone modulation:

DK7IH microsize QRP SSB transceiver ("Micro24") for 14 MHz - Output signal modulated with 2-tone signal
DK7IH microsize QRP SSB transceiver (“Micro24”) for 14 MHz – Output signal modulated with 2-tone signal

Voltage division is 10 volts per cm, so this is 45Vpp which equals to about 5 watts max. peak output. Quite OK for QRP. And here is the spectrum of a 2-tone-modulated signal:

micro24_dk7ih_output_spektrum_dual_tone

Practical setup

The whole transceiver is built on a 12×8 cm Veroboard (4.7″ x  3.1″). There is only one layer. The cabinet is 4 cm high (1.55″), 14 cm long (5.5″) and 9 cm wide (3.5″).

DK7IH - Simple SSB Transceiver for 14MHz (VFO controlled, 5W PEP) - Inside view
DK7IH – Simple SSB Transceiver for 14MHz (VFO controlled, 5W PEP) – Inside view

Left the vernier drive with the homemade capacitor attached. Left of the 9MHz filter you can see the LO, more far left the S-meter (from an old CB radio) hiding the audio amps. The 2 mixer ICs and the relays are sited around the SSB-filter. On the right side the power amp partly hidden by the DC switching board.

Well, that’s the story how a nearly failed project was saved from the scrapyard and came to life by carefully searching the faulty element in the circuit.

Vy 73 de Peter (DK7IH)

 

Advertisements

Revision of the “Cigarette Pack”- 14MHz SSB QRP Micro-Transceiver

DK7IH microsize QRP SSB  transceiver ("Micro24") for 14 MHz
DK7IH microsize QRP SSB transceiver (“Micro24”) for 14 MHz – Fits into one hand
DK7IH microsize QRP SSB transceiver ("Micro24") for 14 MHz
DK7IH microsize QRP SSB transceiver (“Micro24”) for 14 MHz

This article describes the “Cigarette Pack” SSB QRP transceiver” for 14MHz that I first had mentioned some months before. Recently, when taking it from the shelf, the transceiver dropped to the floor and was severely damaged. This lead to serious defects in the front panel area, the main frame, the cabinet and so on. The interior parts were, luckily, not affected by the crash. So, I had to revise the whole radio, make a new front panel and cabinet, ply the frame straightly (as far as possible) and so on. This is the full description of the rig now to complete the files here. The good news: The radio is fine again and fully operational!  And the even better news: I still have not started smoking!  smile1

During reconstruction the transceiver has been extended for about 5 mm so that overall length now is 100mm (3.9 inch). This was done because I intended to build in a loudspeaker. The other dimensions remain unchanged: Width is 52mm (2 inch.), height is 30mm (1.2inch). OK it is slightly longer now than a standard pack of cancer sticks, but who cares? Total cabinet volume is 150cm³.

Basic concept

The transceiver is based on the “Micro 23” rig, that I have described here. Some simplifications of that already simplified radio have been made. Here is the full schematic of this even smaller transceiver:

DK7IH microsize QRP SSB  transceiver ("Micro24") for 14 MHz - Schematic
DK7IH microsize QRP SSB transceiver (“Micro24”) for 14 MHz – Schematic in full size

Very simple rigs like this one always use parts of the circuit for receive and transmit purpose. Here these parts are the 2 mixers (NE602), the SSB-filter  and the interfrequency amplifier.

Signal flow schematic

The NE602 has a balanced output. With mixer 1 only one of them is used. If higher gain is desired, a broadband (or even better a tuned LC circuit) transformer could be used to connect pin 4 and 5 (the mixer outputs) in push-pull mode. I did not do that to save the transformer.

The signal flow can be derived from the design:

DK7IH microsize QRP SSB transceiver ("Micro24") for 14 MHz - Signal flow on receive and transmit
DK7IH microsize QRP SSB transceiver (“Micro24”) for 14 MHz – Signal flow on receive and transmit

Receive mode signal flow

From the antenna relay (not drawn) the rf energy runs through a 2 pole LC filter for 14 MHz. The coils are wound small TOKO coil formers, all respective data is given in the schematic. Coupling is loose via a 3.3pF cap.

NExt stage is an rf preamp for 14MHz with a broadband output. The acitve element here is a dual-gate MOSFET.

After having left this stage the 14MHz signal travels through another 470pF capacitor. This one has high resistance for audio frequency and low for rf frequencies due to the equation: XC =1/(2*PI*f*C). The signal is then fed, together with the audio signal from the microphone (when on transmit), into mixer 1 input on pin 1.  The 1k resistor prevents the rf energy from flowing into the microphone circuit. The two signals are separated from each other by simply exploiting reactance and resistance in a rather clever way 😉.

When receiving the Si5351A clock chip is programmed in a way that the VFO signal (23 MHz) is present on output CLK0.  It is fed into mixer 1 via a small cap to prevent overloading of the mixer. The Si5351A breakout board delivers about 3 Vpp. clock signal, so this must be reduced to about 200mVpp. A 5.6pF capacitor is OK here.

The resulting signal is sent to the SSB filter (a 9MXF24D) that is terminated with 1kOhm and 20pF in parallel. The wanted SSB signal is present at the output of the filter.

Next stage is the interfrequency amplifier, equipped with a dual-gate-MOSFET semiconductor. This one is connected to the AGC chain, on receive a variable voltage is applied to gate 2 (range 0 to 6 V), on transmit the AGC is fully powered to ensure maximum gain.

Next is mixer 2 which is the product detector when receiving. The signal (9MHz +/- sideband shift) is applied to pin 6. Due to the fact that this mixer also serves as transmit mixer, the two signals are taken from the two mixer outputs on pin 4 (serving as audio output) and pin 5 (serving as rf output for transmitting).

Two audio amplifiers (preamplifier and power stage) give a sufficient signal level for an 8 ohm loudspeaker or a headphone.

For the loudspeaker I tried out the tiny ones for smartphones with good success. Only the volume was a little bit low. Then I found another speaker in an old toy of my daughter that turned out to be very much OK for this transceiver. Its diameter is about 3 cm (1.2 inch) and just fits in the housing.

Transmit signal flow

The microphone in this radio is an electret one. The advantage is that these microphones have an internal preamplifier equipped with a field-effect-transistor. The output voltage is fairly high, about 1Vpp. when normally speaking into it. Therefore an audio preamp is obsolete. The microphone signal is directly fed into pin 1 of the first mixer. On transmit the Si5351 signal generator is switched that the 9MHz (+/- sideband shift) signal is fed into pin 6. The SSB filter eliminates the unwanted sideband, the interfrequency amplifier lifts the SSB signal to an appropriate level. The TX mixer is fed with the 23MHz signal resulting in a 14 and 37 MHz signal. The TX band pass filter cleans the signal from the unwanted 37MHz component resulting from the mixer process.

RF power amplifier

The power amplifier is a 3 stage circuit. Stage 1 (preamplifier) brings the signal to about 10 mW. This is coupled into the driver stage via a cap of 0.1uF without any further impedance matching.

The subsequent driver stage shifts the signal level to about 200mW. Linear amplification is ensured her (as well as in the previous stage) by negative feedback in the collector circuit and emitter degeneration with a non-bypassed resistor to GND. An output transformer (winding rate 4:1, impedance rate thus 16:1) lowers the impedance of some 100 ohms to a few 10 ohms present on the input of the final amplifier stage.

The final amplifier brings up a signal level of 3 to 4 Watts PEP. This stage is in AB mode, the appropriate bias is achieved by the 1k resistor going to +12V TX and the current to GND via the silicon diode. This diode must be thermally connectod to the final transistor to stabilize the bias.When the transistor heats up, the silicon diode increases the current through it thus decreasing bias to the transistor.

The 68 ohm resistors serves 2 purposes: First it prevents the input signal from being shorted by the bypass caps in the bias circuit and it stabilizes the rf behavior  of the stage by limiting the gain because certain amounts of the input power are led to GND. This prevents self-oscillation.

DC ad the collector is fed through a radio frequency choke to hinder rf from flowing into the DC line. Radio frequency is directly fed into the low-pass-filter. The output impedance of this stage is roughly 50 Ohms, so the filter can be a 50 ohm circuit with a cutoff frequency slightly above 14MHz.

The VFO section

The Si5351A clock chip used here has three frequency outputs that can be set individually. Only CLK0 and CLK1 are used in this radio. The Si5351A chip is programmed by software in the following manner:

  • Receive: CLK0 is the VFO, CLK1 is the BFO.
  • Transmit: CLK0 is the BFO, CLK1 is the VFO.

The microcontroller reads the tx/rx status and switches the frequencies respectively.

Construction

The radio is a full SMD design on a 0.1″ pitch double sided Veroboard:

DK7IH microsize QRP SSB  transceiver ("Micro24") for 14 MHz - Inside
DK7IH microsize QRP SSB transceiver (“Micro24”) for 14 MHz – Inside

The control panel on the left with tuning knob and volume set. The 64×32 pixel OLED between these controls. Following the microcontroller behind the fron panel (here covered). The controller is an ATmega168 on an Arduino Pro mini board.

The isolated board left of the SSB is the AGC section. The receiver and transmitter shared parts follow, the TX band pass filter is in the foreground. The power transmitter is on the right behind the shield. The shield is necessary to avoid unwanted oscillations when rf is coming back from the power transmitter to the band pass filter prior to the tx section.

On the right there is the SMA socket for connecting the antenna plus a 3 pin header for connecting a headphone. When there is no headphone in use a jumper connects the internal speaker to the speaker line. VDD is applied via a standard DC connector.

The underside of the board has only some SMD components and the wiring on it:

DK7IH microsize QRP SSB transceiver ("Micro24") for 14 MHz - Underside
DK7IH microsize QRP SSB transceiver (“Micro24”) for 14 MHz – Underside

“On the air”

My longest distance achieved with this transceiver (after rebuilding it) has been R2DLS near Moscow who gave me a “59”-report. smile1 The antenna in use is, as always, a Deltaloop.

73 and thanks for reading this article!

Peter (DK7IH)

 

 

Improving the receiver for the 7MHz QRO transceiver

After having done lots of QSOs with the 7MHZ QRO transceiver I found that the receiver still had to be improved. The sensitivity was great, the sound also was but there were some difficulties when operating the radio during evening and night times because  some (minor) interference was audible. This symptom had been caused, as usual, by strong broadcast stations transmitting from 7200+ kHz 41m-band. Occasionally “Radio China International” and “Radio Romania International” were discernable. But cure was on the way: The transceiver has a modular concept. Based on this I decided to do a full reconstruction of the receiver module.

The mixer, which is the most crucial part in a 7MHz receiver was changed to an IC mixer using an SL6440 double balanced mixer (formerly produced by Plessey).

sl6440_mixer_ic

The mixer IC offers a very good IMD3 performance (30dBm maximum according to datasheet) plus some decibels (1 to say exactly!) of gain and thus is a good alternative to the dual-gate MOSFET I had used before.

As a special feature there is an input (pin 11) where a current can be applied that determines the overall mixer current. The higher this value is set, the better the IMD3 performance will be. Max. power dissipation for the IC is 1.2 watts but that will require a heatsink. I found that a resistor of 820Ω will lead to a current of 4mA (13V VDD) on pin 11 line and produces good performance without thermally stressing the IC. For optimized IMD3 performance the SL6440 ic should be run in balanced mode.

The receiver schematic in full:

DK7IH 7MHz QRO SSB transceiver - Receiver section (Version 2)
DK7IH 7MHz QRO SSB transceiver – Receiver section (Version 2) – Full size image

Circuit explanation

Input BPF

From the left we start with a two pole band filter for 7 MHz. LC coupling  again is very loose what reduces the receiver’s tendency to overload.

Receive mixer

Next is the SL6440 mixer ic. Input and output are equipped with broadband transformers (data see schematic, please!). The purpose is to convert an unbalanced signal to a balanced one and vice versa. According to the respective entry in data sheet running the mixer in balanced mode enhances performance. Pin11 is used to control the DC operating conditions of the mixer, a resistor (820Ω) sets appropriate  bias for mixer stage. The 3 diodes (1N4148) supply correct voltage to a pin that is called “VCC2” which should be slightly lower than VCC supplied to the output stage. 3 diodes in series produce the required voltage drop.

In experiments it has turned out the even when gain of the mixer ic is only about 1 dB the resulting output of the whole receiver is higher than that of its predecessor and taking into account that receiver generated noise is not a problem on the lower short wave bands, there is no rf preamplifier.

If you encounter birdies maybe the signal level of the VFO is too high. Then switching a smaller capacitor into the VFO signal feedline is the best idea.

Next stage is the filter switch that has been copied from the previous schematic.

Interfrequency amplifier

This stage contains the well-known MC1350 by Motorola. To simplify this section a minimum design has been chosen, Output is unbalanced and broadband. Input also. The only filtering in the whole interfrequency section is done by the SSB filter prior to the interfrequency amplifier. A 100uF capacitor in VDD line helps to suppress audio frequency feedback and self-oscillation in the receiver strip.

Product detector

As you might have realized the transceiver not longer is a “NE602 free zone”, because this mixer now serves as a product detector. A type of usage where the low IMD3 performance does not matter. The low pass filter by the end of the mixer must be chosen according to the user’s preferences concerning pitch and tone.

Audio amp section

Audio preamp is again an ic, the “antique” LM741. Negative feedback has been set to an amount that there is significant gain in this stage (R=330kΩ).

The audio final amp here has been equipped with the TBA820M integrated circuit, the smaller version of the 16 pin TBA820 integrated audio amplifier. The advantage of this ic compared to LM386 is lower distortion and the fact that this ic is not so prone to self-oscillate.

AGC

Automatic gain control nearly is the same like in the former version. The main difference is that MC1350 needs positive voltage to reduce amplifier gain. Thus the output has been punt into the emitter line. The problem when using an NPN transistor in such a circuit is that maximum voltage is limited to Vmax = VDD – VBE. As a consequence you can not get full 12V out when you supply 12V between C and E. Here this does not matter because AGC significantly reduces gain already when reaching 6 volts (Source: Datasheet):

mc1350_vagc_gain-function

Maximum gain reduction (>60dB) occurs between 6.7 and 7 volts.

Also a manual method to reduce gain has been applied. This is by chosing a voltage between 0 and 12V using a potentiometer. To prevent current flowing from the center of the potentiometer into the ADC input detecting the AGC voltage a silicon diode has been installed. To prevent a short circuit of the AGC voltage against GND when the potentiometer is at 0 position (delivering full gain in the MC1350 amp ic) the 5.6k resistor is used.

Changing time constant can be achieved by a second capacitor set in parallel (either by a switch or by microcontroller).

To protect the analog-digital-converter (ADC) in the microcontroller from excessive input voltage, this is limited to 5.1V by a zener diode.

Performance

The receiver is very sensitive. Reception is possible with the famous “wet finger” ;-). With a large antenna (full sized delta loop) no overload is detectable even during evening and night times. Noise is slightly higher compared to that with the MOSFET equipped receiver but very much acceptable for a 7MHz receiver.

73 and thanks again for watching!

Peter (DK7IH)

SSB Transceiver, 7MHz, 50 Watts, with Dual-DDS-System

DK7IH QRO SSB transceiver for 7MHz/40m
DK7IH QRO SSB transceiver for 7MHz/40m

In this paper we will discuss a single sideband amateur radio transmitter/receiver for the 40 meter band that has been designed to ensure  good performance characteristics with reasonable number of parts (no “overkill” in component use), particularly concerning the receiver. Circuit simplicity and over-average performance were to be combined.

The background: Some years ago I had built the ancestor of this transceiver and afterwards posted an incomplete series of articles (starting here). The transmitter was considered to be quite OK (I could even work a station from South Korea when operating as GJ/DK7IH some years ago) but the receiver was weak.

The shortcomings originated from the rf preamplifier I used together with the 1st mixer, an NE602. The latter had severe problems to cope with the high signal levels on the 40 meter band from out-of-band broadcast stations transmitting on the 41m band (f>7200kHz) or from very strong amateur stations transmitting in-band. This is caused by the technical specs of this Gilbert cell mixer. NE602 has been designed for mobile phone applications and not for shortwave radios. Its IMD 3 is only -15dBm whereas it is able to detect weak signals (-119dBm with an S/N ratio of 12 dB) according to datasheet. Due to this NE602 was excluded from being used at least in the receiver.

Another point was that the rig was too small and too densely packed to be called “service friendly”. Thus I dismantled the radio some times afterwards and had in mind rebuilding it with another receiver and a little bit more space inside.

The Basics

The project has had to meet certain requirements that I would like to point out first:

Frequency generation: Dual-DDS-System: AD9835 as local oscillator and AD9834 as VFO. ATMega644A as MCU (Download source code here)

Receiver: Single conversion superhet, 9 MHz interfrequency with commercial filter (supplied by http://box73.de) shared by transmitter and receiver and relay switched, “NE 602-free zone” ;-), 4 dual gate MOSFETs in rf preamp, rx mixer, if amplifier and product detector, audio stages with BC547 as preamp and LM386 as main audio amplifier.

Edit: I found that there was strong signal of self-reception around 7.100kHz which was not a spurious signal from one of the DDS. It has been a mixing product of one or two oscillators together with a signal from the microcontroller. So I changed the interfrequency to 10.7MHz which cured the problem. I tried to calculate the issue but was not succcesful because I do not know all the frequencies in the microcontroller. I think it is most probable that it is a harmonic of the PWM signal I use for controlling the LED front lights.

Transmitter: 4 stages, 3 of them in push-pull mode, Siemens made mixer IC S042P (really old fashioned, but still available) as DSB generator and TX mixer, rf amplifiers (2N2219A) after filter and tx mixer.

Design: Really “cool” with blue backlight. Sandwich built, not the size of a “micro transceiver”, but handy for travelling.

The Block Diagram

The diagram can be derived from the old project, it is nearly the same:

DK7IH QRO SSB transceiver for 7MHz/40m - Block diagram
DK7IH QRO SSB transceiver for 7MHz/40m – Block diagram

The basic outline of the radio is standard and should not be further discussed.

Dual DDS (VFO and Local Oscillator (LO))

This time I wanted to use 2 digital oscillators. The reason was just to have fun. 😉 Here is the schematic:

DK7IH QRO SSB transceiver for 7MHz/40m - Dual DDS (VFO and LO)
DK7IH QRO SSB transceiver for 7MHz/40m – Dual DDS (VFO and LO) – (Full sized image)

Microcontroller (MCU)

The source code has got about 2200 lines. With the GNU C compiler this leads to a HEX-file of about 43kB. Because of this the controller had to have a little bit of more memory. A “644” is a good choice here. It is clocked internally to 8 MHz clock rate. Radio and user data (user operated keys, S-Meter, TX PWR meter, temperature sensors attached to final transistors) is lead to the analog-digital-converter (ADC) of the MCU. Rotary encoder (optical) is fed into digital inputs. Integration of an RTC is projected but not done yet.

DDS1 (VFO)

Here an AD9834 is used. It is overclocked with 110MHz clock rate. For my receiver with a DDS chip purchased from Mouser this works without any abnormality. With a a chip from the “free market” (ebay) I found that there were strange clicks in the signal. So, I do not really recommend overclocking under any circumstance and/or not to such a high degree.

This DDS is is not terminated with a low pass filter. Due to the high clock rate there is no clock oscillator feedthrough which is supported by the  design of the following amplifier having an audio frequency transistor in the last stage (BC547 and later BCY59) that limits high frequency components due to its early gain decay in the frequency spectrum. The two stage amplifier has been designed for excellent linearity to prevent impurities in output spectrum.

mini43-qro-7mhz-dk7ih_12

The first peak showing the 16MHz signal and the next peak is the first harmonic about 30dB below. Other peaks are from local sources (PC, Printer).

The sine wave also looks quite OK:

mini43-qro-7mhz-dk7ih_13

DDS2 (LO)

This one contains an AD9835 synthesizer clocked to 50 MHz. An LPF here is mandatory. A simple but linear amplifier brings the signal up to 3Vpp which is OK for driving the dual gate MOSFET in the receiver. For the transmitter mixers this amount of voltage is too high, small capacitors reduce the voltage to an acceptable value.

LCD

From another project that I once had built and that is not more in use, a dive computer, I had a 4 lines/20 characters text display that is fairly large. This was to be designated as the LCD for this transceiver.

The Receiver

Building a receiver for the 7MHz amateur band is challenging. On one hand the circuit should be very sensitive for weak signal reception, particularly during day when the band conditions are low due to solar radiation and density of the D-layer. This means the receiver should have a higher gain whereas noise figure does not play a predominant role due to band characteristics with high atmospheric noise on 7MHz.

Next request is high dynamic range to eliminate the spurious signals that occur when front end stages are loaded with high input signal levels.

And last but not least AGC control range should be as wide as possible to cope with weak and very strong signals without the request to intervene by adapting manual gain control. For this a preamp also benefits.

Active mixers like the NE602 show low performance under these conditions. Some high-current mixers like the SL6440 exist, but there are alternatives. On one hand the classical diode ring mixer might come into perspective, otherwise Dual-Gate MOSFETs are well known as having a fairly good ability to cope with high signal levels and so don’t tend to  deteriorating the receiver’s performance severely. Besides they offer some gain and low noise figure (which has not been the main objective in this case) and the circuit is very compact and therefore it was the best choice for a receiver that had been intended to be constructed onto a board of 6 x 8 centimeters.

After these thoughts the following circuit turned out to be the right onset for a receiver inside the projected rig.

DK7IH QRO SSB transceiver for 7MHz/40m - The Receiver
DK7IH QRO SSB transceiver for 7MHz/40m- The Receiver (full sized image)

Circuit explanation (Receiver)

Front end

On the left we start with a 2 pole LC band pass filter for 7 MHz. The coils are wound on TOKO style coil formers (5.5mm size), winding data and parallel capacitors are given in the drawing. The coupling capacitor (2.7pF) between the two LC circuits is very small for such a low frequency. This makes the filter response curve sharper but leads to a slight weakening of the signal coming through the filter. But as the whole receiver has plenty of gain and a very good noise figure, this is the reason why  some weakening of the input signal is acceptable.

Preamplifier

Next is the preamplifier for the received band. It is connected to the AGC chain. You can expect some 25 to 30dB  gain swing by driving up gate 2 of the dual gate MOSFET from 0 V to 6V. A 1:1 voltage divider decrease the 0..12V AGC voltage to 0..6 V where th3N205 MOSFET is close to amplify with maximum gain. Exceeding 6 to 7 volts does not result in significant more gain swing, so I usually drive the MOSFET from 0 to 6.5 volts UG2 (with 13 Volts of supplied voltage.

3n205-ug2-gain-figure
UG2->Gain-Function 3N205 (Source: Datasheet)

The coupling when going from the preamplifier to the receiver mixer is in broadband style. The 3N205 has a very high gain and tends to self-oscillate. A second LC circuit makes the device more prone to going self-resonant and hence produce unwanted signals.

RX mixer

This mixer is very simple and needs only a few components. Both signals are fed into the gates of the dual gate MOSFET. Rf goes to gate 1 whereas gate 2 (the AGC input) is fed with the oscillator signal). Gate voltage depends on the voltage drop at the source resistor and therefore is stabilized. The oscillator signal should be in the range of 2 to 3 volts rf (pp) for a dual gate MOSFET. Lower values will deteriorate the performance of the mixer, e. g. its dynamic range. This signal switches the semiconductor and a superposition of the two signals occurs thus leading to the production of sum and difference of the original frequencies. These signals are fed into…

The SSB filter

which is a commercial one (Supplier box.73.de). The reason why I don’t ladder filters anymore is that I found it extremely difficult (not to say impossible) to get a symmetric filter response curve thus making the lower and upper sideband of the receiver sounding different even when the carrier frequency has been adjusted very thoroughly.

The filter is used for the SSB transmitter as well. To ensure maximum signal separation between the two branches (tx and rx) and between filter input and output I again us a high quality rf relay made by Teledyne. When choosing a relay intercontact capacitance  is crucial. It should (if possible) be < 1 pF.

Don’t forget a clamp diode to VDD over the relay coil to eliminate high voltage voltage peaks generated by self inductance when the coil is switched off. Voltages up to 100 Volts can occur. This might damage the transmit-receive section of this transceiver that is equipped with semiconductors only and does not use a relay.

IF amplifier

This circuit is the same like that of the rf preamp. It also is part of the AGC chain, thus delivering another 25 to 30 dBs of gain swing so that overall gain swing is around 50 to 60dB. In practical research over a long period of observation I found that with an antenna delivering high signal voltage (Delta loop) it was not possible to overdrive the receiver  to a level where signal distortion was audible.

A tuned circuit is also placed here to increase gain. Tuned amplifiers usually have higher gain than broadband ones. It is highly recommended to ground the metal cans of the coil to prevent any self-oscillation. But as I found out, this amplifier is not very prone to go to self-oscillation state.

Product detector

Here again a dual gate MOSFET is used. The circuit is nearly the same like the RX mixer except from the output section. We can see a low pass filter here, consisting of 2 Cs (0.1uF) and a resistor (1k). You can use a radio frequency choke instead, 1mH is recommended.

Audio amplifier

This section consists of two parts, a preamp (with bipolar BC547) and a final amplifier (LM386 IC). It is well-known that this IC tends to oscillate. One measure to prevent this is to keep leads short, switch a low-pass filter (capacitor 100uF and R=33Ω) into the VDD line and to reduce the gain capacitor between pins 1 and 8 to a degree where self-oscillations terminate.

A switching transistor cuts off the audio line by short circuiting it when on transmit. This eliminates any noise when switching. The rx/tx switch now is 100% “click free”. A very pleasant way of operation. 😉

AGC

This is another re-use of a circuit I have frequently used before. It is desired to reduce its output voltage down to 0 volts when a more or less strong af signals appear at the input. The agc voltage is derived from the audio signal of the receiver. Some say that this is not the best choice because you need more time (an af cycle last much longer as an rf cycle) for the waveform to generate the regulating DC voltage.

Nonetheless I have never observed popping or unpleasant noise from incoming very strong signals. The agc response rate is so fast that you won’t notice that it just has regulated even when a strong signal comes in. Only with very, very strong signals a slight “plopp” sound is observable but it is not unpleasant.

A second capacitor can be switched in parallel to the 33uF one. This can either be done by a transistor switch (like shown in the schematic) that in this case is controlled by an output PIN of the MCU. An alternative that I found later is to use the MCU pin directly to switch the cap. When not using the additional cap you must switch the pin as an input so that there is no positive voltage from the pin to the circuit. When you intend to ground the transistor (agc in “slow” position) then the pin mus be set as output by defining the DDR-register respectively AND the pin must be set to 0. So you can get rid of the switching transistor.

Another possibility would be to derive the agc from the interfrequency signal. The problem that occurs in this case is that you have to decouple the local oscillator (bfo) very carefully from the place where agc circuit is placed. Otherwise you are at risk to detect the bfo signal by the agc which leads to reduced response range in the agc. In addition this receiver uses a higher rf voltage level for the mixers (2 to 3 Vpp each). By this the amount of stray energy is higher inside the circuit and thus this rf energy might be detected very early by the agc.

In the emitter line there is a resistor (68Ω) which produces a voltage drop when the transistor is driven. This is fed into the ADC of the microcontroller driving the S-meter display part.

The Transmitter

First the circuit:

DK7IH QRO SSB transceiver for 7MHz/40m - The Transmitter
DK7IH QRO SSB transceiver for 7MHz/40m – The Transmitter (Full sized image)

Microphone amplifier

This amplifier is a simple common-emitter circuit with the directly grounded emitter of the BC547 transistor. This circuit is linear only for low input voltages but suitable for the connected dynamic microphone since this does not produce more than some millivolts of audio energy. Bias comes from the 390kΩ resistor. At the input you find a 2.2nF capacitor from base to GND which helps to prevent coupling in rf energy from the transmitter to the audio stage and thus leading to an impure signal.

The DSB generator + amplifier

The amplified microphone signal is used to produce a double-sideband signal. The ic I use here is an antique but still available part by German manufacturer Siemens, the S042P. It includes a so-called “Gilbert-cell” mixer and an oscillator but the latter is not used here (Datasheet Application note (in German)).

The S042P mixer needs some more components compared to the well-known NE602 integrated circuit but fewer ones than the MC1496. It is designed for 12V usage, thus no voltage regulation is required.The ic can be applied in balanced mode or non-symmetrical. To save components I use the unbalanced circuit alternative. A slight loss in output power is acceptable in this case, there are amplifiers post each mixer in this transmitter.

Ic gain is about 16.5 dB, DC current is about 3 mA.

A crucial point is the signal level of the local oscillator. S042P needs only some hundred  millivolts of oscillator voltage. To prevent overdriving I experimented with different values of the coupling capacitor. 5.6pF seemed best because the LO produces some volts peak-to-peak.

Following there is an amplifier that is a standard circuit and has been tuned for maximum linearity in order to reduce distortion to a minimum (which is also true for the following stages). You can see the well understood 2 master ways of achieving max. linearity in an amplifier stage:

  • Negative feedback between collector and base (i)
  • Emmitter degeneration (II)

Explanation:

i) The first measure goes along with the 2.7kΩ resistor between collector and base of the transistor. This resistor provides positive dc bias voltage to the base and leads 90° out-of-phase ac voltage to the transistor’s input. This reduces gain and therefore distortion. But due to the fact that the whole transmitter strip has plenty of gain, this loss in gain is not a serious problem.

ii) The 10Ω resistor in the emmitter line is not bypassed by a capacitor. This stabilizes the circuit. When the current through transistor increases the emmitter voltage will rise (according to Ohm’s law) and the voltage between collector and emmitter drops. This reduces voltage difference between base and emmitter and hence also reduces gain.

The coupling to the next stage is done by a capacitor of 0.1uF. This causes some impedance mismatch. But that is as well not a big problem because the gain reduction here helps to prevent the whole transmitter from unwanted oscillations by diminishing overall gain.

TX mixer

Here the second S042P is used. The 9 MHz SSB signal is coupled to pin 13 of the ic, a DC connection is established to pin 11. These two pins represent the base connectors for the two current control transistors and should be bridged by a DC resistor in this circuit.

The 150Ω resistor from pin 10 and pin 12 to GND defines the gain of the mixer. Here you can use down to 150Ω but should have a resistor towards VDD to limit current and avoid excessive heating of the device. In this case another 150Ω is used.

VFO signal is coupled symmetrically to pins 7 and 8 via a small trifilar toroid. See schematic for details and please note that center tap is not used here. This is in contrast to the output transformer where the tap is used to feed supply voltage into the mixer.

Another 7 MHz band pass filter terminates the mixer, data for coils and capacitors is in the schematic.

Power amplifier

This amplifier has got 4 stages and except from the first one all are in push-pull mode. The power distribution for these 4 stages is as follows:

Stage Power
Preamp 5mW
Predriver 200mW
Driver 2.5 W
Final amp 50W

Preamplifier

The first of the 4 power stages is the same as the post dsb generator amplifier so there is not more to add concerning this stage. Rf energy is taken out via a transformer with a primary and a tapped secondary winding. This is to provide the balanced structure necessary for the following push-pull stage.

Prediver

This is the first push-pull stage. Its bias is derived from a voltage divider connected to the tap of the input transformer.

Please note: In contrary to the schematic I have installed 2 devices of the 2SC1973 type because the signal turned out to be much purer with these ones on the spectrum analyzer.

A tapped output transformer feeds the amplified rf energy to next board. Output impedance is 50Ω. The coupling to next stage then is done via a shielded cable of (nearly) the same impedance.

Driver stage

This one has an input transformer also center tapped. The tap goes to a bias network consisting of a current limiting resistor (1kΩ), two diodes forming the lower part of a voltage divider and some capacitors as part of a low pass filter to avoid coupling in of radio frequency (rf) energy. The two diodes must be thermally connected to the cases of the transistors. In case these heat up, the diode increases its conductivity thus reducing its resistance. The bias voltage drops and heating is stopped. So, thermal runaway is prevented.

For these two stages (predriver and driver) DC is fed through low pass filter (RFC and 2 caps 0.1uF) to prevent coupling of rf energy via the VDD line.

Final stage

This stage receives input from a balanced structure without a center fed transformer. Instead bias current is linked in via a network of radio frequency chokes and two resistors of 5.1Ω each.

Bias is provided by a current regulating transistor and should be set to about 100mA.

The MRF455 transistors are mounted directly to the aluminium structure of the sheet metal carrying the whole transceiver boards. When mounting them to the Veroboard I did not solder them directly. I used 1.6mm screws and washers to press the brass connectors to the copper strips of the amplifier board:

DK7IH QRO SSB transceiver for 7MHz/40m - Power amplifier underside
DK7IH QRO SSB transceiver for 7MHz/40m – Power amplifier underside

With this I could have been able to remove the precious transistors without having to unsolder them when the device might have turned out to be a failure. But it was not, thank God!

The output transformer is the one I have used in my old 14MHz PA and the ancestor of this radio. It is from an old ATLAS 215 transceiver and I hope that this will be the final place for the transformer.

Two temperature sensors (KTY-81-210) have been installed to measure the temperature of each transistor. They are connected to the microcontroller via voltage dividers (see schematic, please!)

Low Pass Filter and Power Measurement Unit

For the low pass filter I use 2 toroids T50-2. These might appear small but from one source (that I have forgotten) I remember to have found that for 50 watts of power this core is still suffice. Metal powder cores can stand much more power compared with same sized ferrite toroids.

The power measurement unit consists of a network that starts with a resistor of 12kΩ to ensure a significant voltage drop in signal level, then two rectifier diodes (1N1418 or equivalent) follow, some low pass filtering eliminating the last rf energy and the resulting direct current voltage is fed to a variable resistor to set an adequate voltage level for the ADC in the microcontroller.

The rf output made out of a two-tone audio signal measured at the antenna connector:

DK7IH QRO SSB transceiver for 7MHz/40m - Two tone signal, power about 57 watts, close to overdrive
DK7IH QRO SSB transceiver for 7MHz/40m – Two tone signal, power about 57 watts, close to overdrive

The spectroscopical analysis shows the signal on the f -> V figure:

DK7IH QRO SSB transceiver for 7MHz/40m - Output spectrom with max. Pout (>50W PEP)
DK7IH QRO SSB transceiver for 7MHz/40m – Output spectrum with max. Pout (>50W PEP)

RX/TX-switching

A very simple circuit. Two PNP power transistors are used but they don’t have that much to do. They are only designed for switching the low-power parts of the radio. The high current to the drivers and final amplifiers is permanently present in the collector lines but the bias lines are tx/rx-switched and go to 0V during receive periods. This reduces requirements for the power rating of the switch board.

DK7IH QRO SSB transceiver for 7MHz/40m - RX/TX switch board.
DK7IH QRO SSB transceiver for 7MHz/40m – RX/TX switch board.

When pushing the PTT the base of the lower transistor is pulled to GND. So it becomes conductive and TX DC is applied. Via the diode the upper transistor loses its negative voltage and becomes non-conductive.

Construction

The Backlight

One interesting thing was the blue backlight to illuminate the front panel controls. It is made using SMD LEDs that are soldered to small pieces of Veroboard and fixed with 2-component glue to transparent light-scattering plastic bought from a local supplier for architects and designers. This material is used for making models of houses and stuff like that. As light distributor this material is excellent. The LEDs are powered by a linear transistor connected to the pulse width modulation (PWM) output of the microcontroller so that light intensity is adjustable.

Hint: When programming the PWM functions it might occur that PWM frequency is audible in the receiver. If something like that occurs another frequency can be selected without changing the performance as soon as it is high enough that human eyes aren’t able to recognize a flickering.

DK7IH QRO SSB transceiver for 7MHz/40m
DK7IH QRO SSB transceiver for 7MHz/40m

The covers used for the labels and the LCD shield are made from 2mm acrylic and fixed with screws of 1.6 respective 2mm diameter.

The two push-buttons right in top position consist of two bars of acrylic (4.2mm diameter) and are having mechanical contact to small spring-loaded switches behind the front panel:

mini43-qro-7mhz-dk7ih_16

Directly under these acrylic bars there are two LEDs shining into these rods and because of total reflection inside the tubing the optic conductor is sending the light to the front side when the LEDs are powered on. That is how it looks at night:

mini43-qro-7mhz-dk7ih_19

 

General setup

This is a sandwich construction again. On the first side there is the DDS  board (left), the receiver (center) TX mixer and preamplifier (right) and the SSB generator (back). Also there is a 5 lead connector holding the 5 ISP lines (MOSI, MISO, CLK, RESET and GND). This makes firmware updates easy because you don’t have to open the case when you want to update software.

DK7IH QRO SSB transceiver for 7MHz/40m - DDS, RX, TX mixer and SSB generator
DK7IH QRO SSB transceiver for 7MHz/40m – DDS, RX, TX mixer and SSB generator

The other side holds the TX low pass filter plus power measurement unit (left), the power amplifier (center) and the predriver and driver (right). In the back you can see the rx/tx switch board:

DK7IH QRO SSB transceiver for 7MHz/40m - TX LPF, PA, Drivers, RX/TX switch board.
DK7IH QRO SSB transceiver for 7MHz/40m – TX LPF, PA, Drivers, RX/TX switch board.

“On the air”

Again big fun this transceiver! During the ARRL DX contest last weekend I could work some statesiders. With Delta Loop and 50 watts, fairly OK. Working Europe all day is no problem with 50 watts.

During the first QSOs I had reports that the audio sounded clear but somehow “narrow”. I had used an electret mike that time and could not use a dynamic one because the preamplifier following the microphone did not have enough gain. Then, to solve this problem, I decided to do a full reconstruction of the SSB generator board. The one then had used had an AN612 mixer integrated circuit (from an old CB radio). This one was dismantled and replaced by the S042P board. The change took me 3 hours to develop and solder but it paid. I use a Motorola dynamic microphone now that has a very rich and clean sound. I monitored it on a web based SDR receiver, made a recording and found it to be OK.

OK, dear fellow hams, that’s the story so far, some supplements will sure be made, so stay tuned!

Thanks for reading and vy 73 de

Peter (DK7IH)

A very compact SSB transceiver for 40 Meters with 50 watts of output power (Receiver front end and 1st mixer)

For my compact 40 metres transceiver there was not plenty of space for complicated circuits. So I had to find a simple but effective solution for the singe stages. Everybody knows that the first stage in the receiver’s front with the 1st mixer, which is a crucial one, determins the overall performance of the whole receiver to a wide extent. So, which mixer should I use?

Among the “standard” mixers available on the market there is one, that uses only a few external components as a mixer stage that, aside from mixing two signal, delivers a recognizable amount of gain (around 18 dBs): The well-known NE612 (aka “SA602” and other derivates).

But there is one problem: The NE602 has been developed for VHF communications where excessive signal strenghtes are not the primarly issue. On 40 metres the situation is different. Very much different. OK, even if strong in-band signals are present they won’t push the NE602 to its limits as I could find out, the problem are the extremely strong signals from broadcasters at 7.200 khz and above.The NE602 reacts with lots of spurious signals if input levels are too high. Thus, developing a front end, that is able to cope with extremely loud signals only some Kilohertz away fron the operating frequency was a challenge. Intense filtering was the key to success. Here is my solution:

 

Homemade SSB amateur radio transceiver 40 meters (Receiver's front end)
Homemade SSB amateur radio transceiver for40 meters (Receiver’s front end)

For extreme receiving situations with excessive out-of-band signals there is a 10dB attenuator switchable from the front panel. As I found out this is only required if you use an antenna that delivers high rf voltages in the evening from broadcast stations transmitting above 7.200 kHz (like my Deltaloop does). With my vertical antenna using the attenuator on the other hand is obsolete.

After the attenuator you can see a three-pole filter made of tuned circuits with a center frequency of about 7.100 kHz. The trick is the loose coupling between the single tuned circuits. This makes the filter extremely sharp but costs you some gain. To compensate the loss, the following stage equipped with an NPN-transistor is used. Noise figure enhancement is not the problem on 40 meters, so I did not use a FET. A bipolar transistor fills the needs.

After that another 2 tuned circuits, also extremely loosely coupled, follow. Next is the well-known SA602 mixer IC powered with the input signal from the 7MHz filtes and the DDS VFO.The input to PIN 1 and 2 of the mixer IC is symmetical which is preferably to the single ended unbalanced method seen in many other circuits.

The practical solution of the RF preamp is a flat package mounted to the side of the transceiver’s mainframe:

RF Preamp with 3-pole-filter for 7MHz
RF Preamp with 3-pole-filter for 7MHz receiver using SMD technologoy for the amplifier

You can see the antenna input from the right, an on/off switch from top (not in schematic) and the output to the 1st mixer also on the right (connected to the reverse side of the PCB).

Thanks for watching es vy 73 de Peter (DK7IH)